1. Tujuan (kembali)
1. Mengetahui dan memahami sensor LM35 dan sensor Octocoupler
2. Mengetahui prinsip kerja sensor LM35 dan sensor Optocoupler
3. Mengaplikasikan sensor LM35 dan sensor Optocoupler sebagai kontrol kecepatan motor
2.1. Alat
Motor DC adalah alat yang dapat mengubah energi listrik menjadi energi listrik menjadi energi gerak berupa putaran.
Klasifikasi resistor :
a. Fixed Resistor (Nilai resistansi yang tetap)
1.Carbon Composition Resistor (Resistor Komposisi Karbon) : nilai resistansinya berkisar dari 1Ω sampai 200MΩ dengan daya 1/10W sampai 2W.
2. Carbon Film Resistor (Resistor Film Karbon) : nilai resistansinya berkisar dari 1Ω sampai 10MΩ dengan daya 1/6W sampai 5W. Dapat bekerja di suhu yang berkisar dari -55°C hingga 155°C.
3. Metal Film Resistor (Resistor Film Logam) : nilai resistansinya dipengaruhi oleh panjang, lebar dan ketebalan spiral logam.
b. Variable Resistor (Nilai resistansinya dapat berubah dan diatur)
1. Potensiometer : nilai resistansinya tertulis di badan Potensiometer dalam bentuk kode angka.
2. Rheostat : dapat beroperasi pada tegangan dan arus yang tinggi
3. Preset Resistor (Trimpot) : berfungsi seperti Potensiometer tetapi memiliki ukuran yang lebih kecil dan tidak memiliki Tuas.
c. Thermistor/Thermal Resistor (Nilai resistansinya dapat dipengaruhi oleh suhu)
1. Thermistor NTC (Negative Temperature Coefficient) : perubahan suhu berbanding terbalik terhadap perubahan resistansi.
2. Thermistor PTC (Positive Temperature Coefficient) :
d. LDR/Light Dependent Resistor (Nilai resistansinya dipengaruhi oleh intensitas cahaya)
Datasheet resistor
Konfigurasi pin Op Amp :
1.
2.
3.
4.
5.
6.
7. Pin8 (NC) : Tidak ada koneksi
Spesifikasi-Spesifikasi Op Amp :
1. Tegangan offset input. Dalam banyak kasus, tegangan output op amp tidak boleh nol ketika tegangan pada input adalah nol. Tegangan yang harus diterapkan dalam terminal input untuk menggerakkan output ke nol adalah tegangan offset input.
2. Arus offset input. Seperti tegangan offset bisa diperlukan melalui input untuk men-zero-kan tegangan output, sehingga arus jala bisa diperlukan melalui input untuk men-zero-kan tegangan output. Arus yang demikian dijadikan acuan sebagai arus offset input. Ini diambil sebagai perbedaan dua arus input.
3. Arus bias input. Ini adalah rata-rata dari dua arus input yang diperlukan untuk menggerakkan tegangan output ke nol.
4. Slew rate. Jika tegangan diterapkan dengan cepat ke input dari op amp, output akan saturasi ke maksimum. Untuk input step slew rate adalah kecepatan dimana output berubah ke nilai saturasi. Ini khususnya dinyatakan sebagai tegangan per mikrosecond (V/ms).
5. Bandwith frekuensi gain satuan. Respons frekuensi dari op amp khusus disefinisikan dengan bode plot dari gain tegangan open loop dengan frekuensi. Plot seperti ini sangat penting untuk rancangan rangkaian yang berhubungan dengan sinyal a-c. Adalah diluar jangkauan dari tulisan ini untuk menjelaskan detail dari desain seperti ini yang memakai bode plot.
Konfigurasi Transistor NPN
Tegangan konstruksi dan terminal untuk transistor NPN bipolar ditunjukkan di atas. Tegangan antara Base dan Emitter ( VBE ), positif di Base dan negatif di Emitter karena untuk transistor NPN, terminal Base selalu positif sehubungan dengan Emitter. Tegangan supply Collector juga positif sehubungan dengan Emitter ( VCE ). Jadi untuk transistor NPN bipolar untuk menjalankan Collector selalu lebih positif terhadap Base dan Emitter.
Relay berfungsi sebagai switch yang bekerja jika kumparan dialiri arus.
Fitur :
1. Tegangan pemicu (tegangan kumparan) 5 V
2. Arus pemicu 70 mA
3. Maksimum beban AC 10 A
4. Maksimum beban DC 10 A
5. Switching maksimum 300 operasi/menit
Datasheet relay
Simbol LED
Dari simbol LED diatas dapat diketahui bahwa LED memiliki dua kaki atau kutub yang berbeda, masing-masing adalah katoda dan anoda. Pemasangan LED pada rangkaian juga tidak boleh terbalik, karena apabila dipasang terbalik maka LED tidak akan dapat memancarkan cahaya dan tidak dapat dialiri tegangan listrik.
f. Potensiometer
Potensiometer berperan sebagai resistor variabel atau Rheostat.
Bagian-bagian penting dalam komponen potensiometer :
1. Penyapu atau disebut juga dengan Wiper
2. Element Resistif
3. Terminal
MOSFET adalah sebuah perangkat semikonduktor, yang kalau dalam IC menjadi sebuah komponen inti.
MOSFET memiliki empat gerbang terminal :
1. Source (S)
2. Gate (G)
3. Drain (D)
4. Body (B).
Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor.
LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain.
Karakteristik Sensor LM35:
a. Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
b. Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC
c. Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
d. Bekerja pada tegangan 4 sampai 30 volt.
e. Memiliki arus rendah yaitu kurang dari 60 µA.
f. Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
g. Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA. h. Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.
Gambar 1. Grafik Respon Sensor LM35
Keistimewaan IC LM35 :
1. Kalibrasi dalam satuan derajat celcius
2.
3.
4.
5. Dioperasikan pada catu daya 4 V – 30 V
6. Arus yang mengalir kurang dari 60 μA
Maka dapat disimpulkan prinsip kerja sensor LM35 sebagai berikut:
a. Suhu lingkungan di deteksi menggunakan bagian IC yang peka terhadap suhu
b. Suhu lingkungan ini diubah menjadi tegangan listrik oleh rangkaian di dalam IC, dimana perubahan suhu berbanding lurus dengan perubahan tegangan output.
c. Pada seri LM35 Vout = 10 mV/°C. Tiap perubahan 1°C akan menghasilkan perubahan tegangan output sebesar 10mV.
b. Sensor Optocoupler
Optocoupler adalah komponen elektronika yang berfungsi sebagai penghubung berdasarkan cahaya optik. Pada dasarnya Optocoupler terdiri dari 2 bagian utama yaitu Transmitter yang berfungsi sebagai pengirim cahaya optik dan Receiver yang berfungsi sebagai pendeteksi sumber cahaya.Masing-masing bagian Optocoupler (Transmitter dan Receiver) tidak memiliki hubungan konduktif rangkaian secara langsung tetapi dibuat sedemikian rupa dalam satu kemasan komponen.
Jenis-jenis Optocoupler yang sering ditemukan adalah Optocoupler yang terbuat dari bahan Semikonduktor dan terdiri dari kombinasi LED (Light Emitting Diode) dan Phototransistor. Dalam Kombinasi ini, LED berfungsi sebagai pengirim sinyal cahaya optik (Transmitter) sedangkan Phototransistor berfungsi sebagai penerima cahaya tersebut (Receiver). Jenis-jenis lain dari Optocoupler diantaranya adalah kombinasi LED-Photodiode, LED-LASCR dan juga Lamp-Photoresistor.
Pada prinsipnya, Optocoupler dengan kombinasi LED-Phototransistor adalah Optocoupler yang terdiri dari sebuah komponen LED (Light Emitting Diode) yang memancarkan cahaya infra merah (IR LED) dan sebuah komponen semikonduktor yang peka terhadap cahaya (Phototransistor) sebagai bagian yang digunakan untuk mendeteksi cahaya infra merah yang dipancarkan oleh IR LED.
Gambar 2. Rangkaian Internal Komponen Optocoupler
Dari gambar diatas dapat dijelaskan bahwa Arus listrik yang mengalir melalui IR LED akan menyebabkan IR LED memancarkan sinyal cahaya Infra merahnya. Intensitas Cahaya tergantung pada jumlah arus listrik yang mengalir pada IR LED tersebut. Kelebihan Cahaya Infra Merah adalah pada ketahanannya yang lebih baik jika dibandingkan dengan Cahaya yang tampak. Cahaya Infra Merah tidak dapat dilihat dengan mata telanjang.
Cahaya Infra Merah yang dipancarkan tersebut akan dideteksi oleh Phototransistor dan menyebabkan terjadinya hubungan atau Switch ON pada Phototransistor. Prinsip kerja Phototransistor hampir sama dengan Transistor Bipolar biasa, yang membedakan adalah Terminal Basis (Base) Phototransistor merupakan penerima yang peka terhadap cahaya.
Gambar 3. Grafik Hubungan Kecepatan dan Waktu pada Sensor Optocoupler
c. Resistor
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika.
Cara menghitung nilai resistansi resistor dengan gelang warna :
1. Masukan angka langsung dari kode warna gelang pertama.
2. Masukan angka langsung dari kode warna gelang kedua.
3. Masukan angka langsung dari kode warna gelang ketiga.
4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n), ini merupakan nilai toleransi dari resistor.
Ketika sensor mendeteksi suhu di bawah 27 derajat celcius, maka akan ada tegangan yang keluar dari sensor dan arus akan mengalir ke kaki inverting op amp dimana fungsinya sebagai detektor inverting. Karena tegangan input di kaki inverting lebih kecil dari tegangan di kaki non inverting, maka output yang dikeluarkan mendekati +Vcc. Kemudian arus mengalir ke R1 lalu ke U1, karena U1 aktif D1 juga aktif. Arus dari baterai menuju ke R7, Q1, R3, dan relay. Arus dari R7 masuk ke pin 5 U1 lalu dikeluarkan melalui pin 4 dan menuju Q1 yang mengakibatkan transistor tersebut aktif sehingga ada arus yang mengalir dari kolektor ke emiter dan ke ground. Arus dari basis Q1 menuju U2 yang menyebabkan U2 aktif dan arus menuju pin 2 lalu ke ground. Arus dari R3 menuju pin 5 U2 lalu dikeluarkan melewati pin 4 dan menuju basis Q2 yang menyebabkan Q2 aktif sehingga arus yang mengalir dari sumber ke relay ke kolektor, ke emitor dan ground. Hal ini mnegakibatkan relay aktif dan rangkaian pun menjadi tertutup yang mnegakibatkan motor dan buzzer aktif.
Ketika sensor mendeteksi suhu di 27 derajat celcius ke atas, maka akan ada tegangan yang keluar dari sensor dan arus akan mengalir ke kaki inverting op amp dimana fungsinya sebagai detektor inverting. Karena tegangan input di kaki inverting lebih besar dari tegangan di kaki non inverting, maka output yang dikeluarkan mendekati -Vcc atau mendekati nol. Karena arus output kecil sehingga U1 tidak aktif, mengakibatkan Q1, U2, dan Q2 tidak aktif juga. Jika Q2 tidak aktif, maka arus dari sumber, ke relay, tidak bisa melewati Q2 sehingga relay off dan motor serta buzzer juga off
4.1 prosedur percobaan (kembali)
1.
Buka aplikasi Proteus
2. Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen Relay, Motor DC, Sensor LM35, LED, Transistor NPN BC548, Octocoupler, Resistor, Op amp, Potensiometer, dan Mosfet
3. Rangkai setiap komponen menjadi rangkaian yang diinginkan
4. Ubah spesifikasi komponen sesuai kebutuhan
5. Jalankan simulasi rangkaian
5. Bentuk Rangkaian (kembali)
7. Link Download (kembali)
Tidak ada komentar:
Posting Komentar